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Abstract In several works the normalized mechanical properties of composite materials with
curved structures have been studied. These investigations have been carried out relying upon various
approximate theories by employing different kinds of hypotheses. Furthermore. there are a few
papers in which the above investigations have been carried out using the results obtained within the
framework of the piecewise-homogeneous body model with the use of exact three-dimensional
equations of linear theory of elasticity. However. under determination of the normalized mechanical
properties. these results do not enable one to take into account the nonlinear effects owing to the
curvature of reinforcing layers of composite materials. Using a concrete problem as an example.
the above method is developed for problems of stress-deformation distribution in such composite
materials within a geometrically nonlinear framework and on the base of the obtained results. the
nonlinear normalized mechanical properties of composite material with spatially periodically curved
layers are determined.

1. INTRODUCTION

In series of investigations, Bazhant (1968). Bolotin and Novichkov (1980). Khoroshun and
Maslov (1980). Whitney (1966) and others have studied normalized mechanical properties
of composite materials with curved structures. Note that these investigations have been
carried out on the basis of various approximate theories using different kinds of hypotheses.
In the papers of Akbarov and Guz® (1984. 1985), based on the piecewise-homogeneous
body model using exact three-dimensional linear equations of the theory of elasticity. a
method through which the stress-deformation state in laminated composites with the curved
structures may be obtainable has been proposed. The investigations carried out recently
using the method of Akbarov and Guz' (1984) [the review of these investigations is given
in detail by Akbarov and Guz' (1992)] enabled Akbarov ¢ af. (1992) to determine the
normalized mechanical properties of the above composite materials using the results
obtained within the framework of the piecewise-homogeneous body model. However, using
determination of the normalized mechanical propeties. the results of the research reviewed
in the paper by Akbarov and Guz' (1992) do not allow nonlinear effects owing to the
curvature of reinforcing layers of composite materials to be taken into account. It is evident
that these nonlinear effects may be taken into account only using the results obtained from
the exact equations of the nonlinear theory of elasticity. Thus, in the present paper. with a
concrete problem as an example, the method by Akbarov and Guz' (1984) is developed for
the case of problems of stress-deformation distribution in composite materials with curved
structures within a geometrically nonlinear framework. By employing the obtained results.
the nonlinear normalized mechanical properties of composite material with spatially period-
ically curved layers are determined.
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2. FORMULATION AND METHOD OF SOLUTION OF STRESS-DEFORMATION STATE
PROBLEMS

Consider the laminated composite material which has an infinite number of cophasi-
cally curved layers alternating in the direction of the Ox, axis (see Fig. 1). Suppose that
these layers are periodically curved in the directions of the Ox, and Ox; axes. The values
related to the matrix will be denoted by superscripts (1), and the values related to the filler
by superscripts (2). Taking into account the periodicity of the composite structure shown
in Fig. | in the direction of the Ox, axis with period 2(H'> + H'"), where 2H'" is a thickness
of the matrix layer and 2H'? is a thickness of the filler layer, among the layers considered
we single out two of them, i.e. 1, 1® (see Fig. 1), and discuss them below. We associate
the corresponding Lagrangian coordinates O% x{"x¥ x{ (k = 1,2) which in their natural
state coincide with Cartesian coordinates and are obtained from Ox,x,x; by parallel
transfer along the Ox, axis, with the middle surface of each layer of the filler and the matrix.

Throughout the investigations repeated indices are summed over their ranges, however,
underlined repeated indices &, { and (k) are not summed. The angle brackets () are also
used throughout the paper to denote the integral throughout the volume of the rep-
resentative element.

Now we investigate the stress-deformation state in the above body under loading *“at
infinity” by uniformly distributed normal forces of intensity p, in the direction of the Ox;
axis. Note that p, denotes the stress averaged over the total area of the considered body
affected by the normal external force in the Ox, direction.

Assume that the matrix and filler layer materials are homogeneous, isotropic and
linearly elastic. For each layer we write the equilibrium equations, Hooke’s law and geo-

metrical relations as follows
o A, k)
C . Ou
| <(57 +——|=0
‘7»"§ k) (”»\'V(F)

ol = 20003 420 0% = o) + e + e,

24, &) 2 k) A k)Y A (k)
. oul ou cut ut o
2 = 4 4 =123, k=12 (1
ax® o oxP oxlt oy

The notations used in eqn (1) are conventional.
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Fig. 1. The structure of composite material with alternating cophasically spatially periodically
curved layers.
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Suppose that the conditions of complete cohesion are fulfilled at the interface between
matrix and filler materials. On the basis of the above. the contact conditions can be written
in the following form:
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where S™ (57) is upper (lower) surface of /'’ layer of the filler (see Fig. 1), n;" (n;7) are the
orthonormal components to the surface S* (5 ).
We write the equation of the middle surface of the layer /' as

5

X = Fe? xb) = af (7 x. (3)

Here ¢€[0.a) is a dimensionless small parameter and @ < 1. The geometric meaning of &
and a will be described by the specifically prescribed form of function (3). We assume that
the function F(xi>.x%’) and its first order derivatives are continuous and satisfy the

following condition :
g ﬂ.F 2 3[; 2
(‘2.\,(1_ ) (‘T_\_l‘_ )

In the considered case the function (3) is selected in the form:

p) 2
5 . LT 5 LT 5
Xy =L, sin /—:\"l”cosT Xy (5)
1 3

where L, is the length of the arrow of curving rise, /, and /; are the wavelength of the forms
of middle surface curving in the Ox, and Ox; directions, respectively.
With the assumption L, < /,. the value of the small parameter 1s selected as

L,
= -, 6
= (6)
Introducing the parameter ; = /,//; and taking into account eqns (5) and (6), the above
mentioned « is defined from eqn (4) as:
a=QCr(l+9)" %) " (N

Thus, by the above. within the framework of the piecewise-homogeneous body model
with the use of exact three-dimensional equations of the nonlinear theory of elasticity with
only geometrical nonlinearities, the problem is treated exhaustively. For the solution of this
problem the following method is proposed.

The values characterizing the stress-deformation state of arbitrary 1*'th layer are
sought in series form in terms of the parameter ¢ as follows:

)
bk ‘ .
ol el o =Y e el el w1 (8)
g =0

Using the condition of constant thickness of the filler layers and eqns (3) and (4) the
following equations are derived for surfaces S* (see Fig. 1):
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where 7, and ¢, are parameters and ¢,, 1; €(— oc, + o0).

Similar expressions can also be derived for n¥ . Taking into account the expressions of
the x\*'* . n' we expand the values of each approximation (8) in series in the vicinity of
(t,. £ H* 1,) and after some operations we obtain from eqn (2) for each approximation
the corresponding contact relations. The contact relations associated with the gth approxi-
mation contain the values of all previous approximations. Substituting (8) in (1) and
comparing equal powers of ¢ to describe each approximation, we obtain the corresponding
closed system equations. Owing to the linearity of Hooke’s law, it will be satisfied for every
approximation (8) separately. The remaining relations obtained from eqn (1) for every gth
approximation contain the values of all previous approximations.

To simplify the exposition, we write the above relations for the zeroth and first
approximations.

The zeroth approximation
In this case eqn (1) holds and we obtain from eqn (2) the following contact conditions :
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The first approximation
The equilibrium equations in terms of displacements are
Liu =0, an
whereas geometrical relations are given by
ou's! ouk-!
alf! (/+q“) - +3 (l+g“) T (12)
l
and contact conditions become
of
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Inegn (11). L' are operators and they are defined by the following expressions :
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The following notations are used in (14):
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In eqns (15) and (16), £% and v'*' are Young's modulus and the Poisson coefficient,
respectively.

Note that when the expressions (11)—(16) are written, we take into account that the
values of the zeroth approximation correspond to the uniform stress state in every con-
sidered layer. Furthermore, note that the analogous equations can be written for the values
of the subsequent approximations.

Consider now the determination of the zeroth and first approximations. It follows
from the foregoing and from eqn (10) that the zeroth approximation corresponds to the
stress-deformation state in a laminated composite in the case of an ideal (uncurved) layout
of the layers with a prescribed form of the external forces. Therefore, in the case under
consideration for determining the zeroth order approximation, the nonlinear terms in eqns
(1) and (10) can be neglected with sufficiently high accuracy. Thus, the zeroth approxi-
mation may be assumed to correspond to geometrical linearity. In this case, from the
statement of the problem on the zeroth approximation, we may write
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Taking into account eqns (1) and (17). and the relations
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we obtain the following expressions for the zeroth approximation:
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Note that in the case, when v'" = v we obtain ¢4{y° = 63 = 0 from eqn (19).
Consider now the determmatlon of the first order approximation. In this case, we
suppose that v'"" = v** = v. Taking into account eqns (5) and (13), the displacements in

this approximation are represented in the following form:

k), L (k)

1A) 2n (3] 2n (k)31
=@ )(cos 7 - x\ cos AR 0,

1 3

o, 2, o 2,
+sm—] ¥ cos i x®o? +smT x® sin — 3 x®sH.  (20)
1 3 1 3

Substituting eqn (20) into (11), we obtain the following system of ordinary differential
equations for the determination of the unknown functions @{* :

dp® d(p's&) v
W +af o* +4) < - “ +1‘1%'<{)35')

>—o, 0=1,2,3, (21)

where
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Following some transformations and taking into account eqns (10)—(22), the rep-
resentations for the functions ¢’ are obtained as:
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Taking into account that the unequality 4 « | is practically true, we prove by direct
verification that the roots of characteristic equations corresponding to the differential
equations (25) and (26) are real and complex numbers, respectively. Furthermore, taking
into account that in the considered case, ¢! and ¢%"' must be even functions with respect
to x{, the solutions of eqns (25) and (26) are selected in the following form :
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Using eqns (23) and (1), the equations for the determination of the unknown constants
AP B¥, B¥ entering into eqn (28) are obtained from eqn (9).

Thus from eqns (28), (29) and (23) and from Hooke’s law, we completely determine
the first order approximation. In this case, the components of the stress and deformation
tensors can be represented by

gt g (v . . X :
{ ' } = { ' }(6/sin <2n'\-'>cos <2nh)+6,'5f cos <2nl> sin <27[Y}>
gt g h h h b
1ol8tcos (21 Yeos (202 )4 6267 sin (22 )sin {2252 )}, (30)
/, A A 1

where ¢/ are Kronecker symbols, g!f' (x¥#), d#"' (x") are the known functions defined by
eqns (28). (29), (23) and (1). Owing to the cumbersome forms of these functions we prefer
not to show them here.

Taking into account some obvious changes and continuing this process in a similar
manner. we can also determine, in principle, subsequent orders of approximations, the
expressions of which are obtained in the form of the separation of the arguments as in eqn
(30).

Thus, from the above the stress-deformation state in the every component of the
considered composite material is determined with sufficiently high accuracy.

3. DETERMINATION OF NORMALIZED MECHANICAL PROPERTIES

As is well known, for the determination of the values of the normalized modulus of
elasticity, it is necessary first to select the representative element and to define the averaged
values of the components of the stress and strain tensors over the volume V of this element,
Le.

n

] 1
<%>:VJQAV,<%>:VJQMV (31)
v

I

However, for definition (31) it is necessary to know the distribution of the stresses and the
strains in every component of the representative element.

Consider the calculation of the integrals (31) in the above case. We attempt to present
another point of view on the method described in Section 2. We denote by D the region
occupied by the 1%'th layer in the considered composite. The coordinates of points in the
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region are denoted by *” in the corresponding system of coordinates O x{* x{'x{". Thus,

the functions described the stress-deformation state in the 1''th layer will be dependent on
the coordinates ¥

Now for each region D) we choose a strip D', the thickness of which is equal to the
thickness of the layer occupied by the region D*'. Coordinates of the points of the strip
D® are denoted by x¥.x¥., and x%¥ where x¥.xPe(—oc.+c) and
—H% < x% < +H® 1t is required that between coordinates ¥*’ and x*’ the following
relations should be satisfied :

for the matrix layer:
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for the filler layer:
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X , ¢ /e [efy
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cx, ° cxy | \ox CXy
In eqns (32) and (33) suppose that x{"" = x{” = x,. x{"" = 2\’ = x;. Note that formulae

(32) and (33) are obtained by direct verification. The conclusion may be drawn that by
using (32) and (33) the points of the strip D’ are uniquely mapped into points of the
region (the layer) D%

Taking into account the considerations presented, the essence of the method described
in Section 2 may be formulated in the following form. The solutions of the nonlinear
equations (1) in the regions D satisfying the contact conditions (2) and the corresponding
boundary conditions are reduced to the solutions of the successive linear boundary problems
in the regions (strips) D™ In this case the functions describing the stress-deformation state
in layers (regions) D’ are determined by the following formulae with functions which are
the solutions of this series of linear problems for regions D*’:

O~.(A] (/,
{ v }(.\’(IA',-‘?E&],.‘e { " TS W), (34)
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& "J
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If we substitute ¢/ by ¢/ in eqn (35), we obtain the formulae for the definition of
e\, Note that by writing (£, ¥§, ¥{'), as represented by eqns (32) and (33), instead of
(xt", % x{) in eqn (8), and expanding the values of every approximation in the series in
the vicinity of (x{*, x{, x{), followed by classifying in equal powers of ¢, we can obtain
expressions (35). After these preliminary operations, consider the calculation of the integrals
(31). For this purpose, we separate the representative element in considered composite. By
direct verification we prove that such element may be only the element indicated in Fig. 2.
The volume of this element we denote by ¥ and represent it in the form ¥V = VD4 /2,
where V2 (7'") is the part of V filled by the layer of the filler (the matrix). Furthermore,
we require that the coordinates of points of the ¥ are determined with the help of eqns (32)
and (33) in the case when

{ .3 /
g <SS o<l <o,
—_HW < b < 0, 0 < xij!) < H(Z). (36)

After separations of the above representative element, we determine the average values of
the stress and strains over the volume V of this element, i.e.

<U//> = ’7(|)<07:/])>+r](2"<0:l(/2' ? <{“!/> = ’7‘”<g:/l)>+’](2)<€1('/’2)>5
@)1 e .
{0;' } =50 [ {%;) }(,\",“,.x"f’..ﬂk') dre. 37
& = e g“f‘

Taking into account that with the change of the coordinates ' in the volume V*® the
g

«* in eqn (33) also change, we obtain from eqn (34)

coordinates x|
(g . (P
{ ’ >} _ 5 { }(_Ygﬁl, ). (38)

Gy T e
where
<pl(,k)-q 4 3, 4 HI6A 1,2 ijé’ﬂ 0w . . .
b= b O ) 4 | | da,
e H™ L /4 7IRES 0 (’,{,‘)""

k=12 (39

Writing the expressions of P9 ¢\ by ¢/f ¥ and calculating the integrals (39), we

1,/2

Fig. 2. Representative element selected from the considered composite material.
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determine (o, . {¢,> from eqns (38) and (37). After these operations we define the defor-
mation energy U accumulated in a selected representative element. In the considered case,
after some transformations. we obtain

L':‘:E‘(l+{2:}'3+£I4’1'4+‘”)/::. (40)
where
), — (.:\llu'- — ;:(Ijlm . E\ _ I]H‘E"I\—}-I]'LEQ)A
o= TN EST ETY vy k= 2rHYL 41)

As an example, we write expressions for 7.

E _ £ _
o P F(—';, CPio<eln. (4

where
Py =0 Py el =70 e,
P "")] [(Pfrz"">
/ Lyl IEE } (43)
} e ( / ] Celtny f / 1(0'3""") )

iy

According to the well known procedure. by differentiating the expression U (40) with
respect to 4, we define

T
o) = = E (7). (44)
(s

Thus, we obtain the expression for the construction ot the nonlinear dependences
between the averaged values of the stress and strain under uniaxial loading in the direction
of the Oy, axis of the considered composite material having the structure illustrated in Fig.
1. Note that the above nonlinearity arises as a result of the curvature of the reinforcing
layers in the composite material. Moreover, note that in eqns (40)-(42). E, is a normalized
modulus of the considered composite material in the direction of Ox, axis (see Fig. 1) in
the case of ideal layout of the layers in it. In other words. if & = 0 we obtain £, = E, from
eqn (40).

4 NUMERICAL RESULTS

Now consider a series of numerical results obtained within the framework of the above
approach and investigate the influence ol the change of structural parameters of composite
materials shown in Fig. 1. on the character of relations between E,(2)/E, and 4. and
between {o,,>/E, and /. as well. In this case, we use only the first two terms of the series
(40) and suppose that " = v'*' = ().3. & = 0.025 (unless otherwise specified). The parameter
K = 2nH"//, 1s introduced. The uniaxial tension and uniaxial compression are investigated
separately.
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Fig. 3. Graphs of relations between E((+) E,, {,,>/E, and deformation /. at ¥ = 0.5. In the case

of tension.

Uniaxial tension

In this case. we suppose that p, > 0. The dependences between £, (/)/E, and A (Fig.
3a) and between {a,,)> and 4 (Fig. 3b) are shown in Fig. 3 for the cases y = 0.1, 1.0, 1.5 at
ECVE" =350, p'" = 0.5, k = 0.1. These graphs show that at 4 < 0.04 with increasing 4 the
stiffness of the considered composite increases insignificantly. However, with 4 > 0.04 with
increasing /. the above-mentioned stiffness increases sharply. Furthermore, it follows from
the graphs shown in Fig. 3b thatin this case, for 4 < 0.03 the dependences between {a,,)/E,
and 7 are linear with sufficiently high accuracy. For 4 > 0.03 the above dependences are
characterized by clearly defined nonlinearity. Note that analogous results are obtained with
other values of parameters of the considered problem. Moreover, note that from comparison
of the graphs constructed using various values of y it follows that by increasing y the degree
of the nonlinearity of investigated dependences weakens insignificantly.

To investigate the influence of the change of E®/E" on the character of the above
dependences. consider the graphs in Fig. 4, which are constructed with the use of values
n"' = 0.5,k = 0.05, 7 = 0.1. These graphs show the relations between £, (1)/E, and 4 (Fig.
da). and between (¢, >/E, and 7 as well (Fig. 4b) with E®?/E" = 20, 25, 30, 35, 50 and
100. 1t follows that with increasing E7/E", the non-linearity of the investigated depen-
dences begins in the early stage of the uniaxial deformation in the direction of Ox,; axis
from these results.

Consider the curves shown in Fig. 5 and constructed at y = 0.1, 1.0, 1.5 which indicate
the relations between £,(4)/E, and / (Fig. 5a) and between {o,,>/E, and / (Fig. 5b) as
well in the case ' = 0.35, x = 0.1, E¥/E" = 50. The comparison of these results with
those given in Fig. 3, obtained with the same values of the parameters x, E'/E" and 7 in
the case #'"' = 0.5, proves that by decreasing the filler concentration in the considered
composite (i.e. '), the value of the deformation (i.e. i) after which the nonlinearity of
investigated dependences begins, increases.
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Fig. 4. Graphs illustrating the influence of the change of E'*/E'Y on the character of relations
between £(2) . {5, > I, and deformation 2. In the case of tension.
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Fig. 5. Graphs of relations between £,(2) E,. {6,,> £, and deformation 4 at y¥ = 0.35. In the case
of tension.

With the above result we restrict ourselves to the analysis of the results obtained in
uniaxial tension of the considered composite material in the direction of the Ox, axis (Fig.
1.) From this analysis we may conclude that by growing deformation, the curvature of
reinforcing layers in the composite material leads to increase of the stiffness under the
tension of the considered material.

Uniaxial compression

To investigate the relations between £, () £, and / and between (g,,)/E, and 4 in the
case when p, < 0. The graphs of the above relations are shown in Fig. 6 for the cases
y=0.1,10,1.5atn? =0.5. E?E" = 50 and x = 0.1, 0.02.

The above curves show that by increasing 4 the values of F,(4) (Fig. 6a) decrease
steadily. Moreover, these curves show that subsequent to a certain stage of the deformation,
the dependences between {o,,> and ~ (Fig. 6b) become nonlinear. Note that unlike the
uniaxial tension in the considered case, i.e. in the uniaxial compresion, by increasing /, the
stiffness of the composite material with the structure considered, reduces.

The comparison of results obtained for various values of x and 7 shows that with
increasing the pliancy (i.e. by decreasing the values of x) of reinforcing layers, as well as,
by decreasing y, the above nonlinearity (between {a,,>/E, and 4) arises in an earlier stage
of the compression deformation.

The graphs (Fig. 7) constructed with use of the values ¢ = 0.015, y = 0.1, ¥ = 0.5
and x = 0.1 demonstrate the influence of the change of E”’/E‘" on the character of the
investigated dependences. It follows that by increasing £7'/E" the nonlinear character of
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Fig. 6. Graphs of rclations between £,(4) £,. {a,,> E, and deformation 7 at 7' = 0.5. In the case
of compression.
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Fig. 7. Graphs illustrating the influence of the change of £ E'" on the character of relations
between £,(+) E,, {a,.>‘E. and deformation .. In the case of compression.

the dependences between £, (/)/E, and / (Fig. 7a) and between {a,,>/E, and 4 (Fig. 7b) is
observed in an earlier stage of the deformation.

Note the following conditions obtained from the results shown in Figs 6 and 7. These
results prove that in the relation between (o, >/E, and ~ there is a value of / under which

Kooy (45)

d..
Subsequent to this value of 2, with an insignificant increase in A. the stress {o,,» decreases
sharply. It is known that the analogous phenomenon in fracture mechanics is called
“material instabilities™, and in certain cases is applied as a criterion of fracture of materials.
From the above we may conclude that the relation (45) can be applied as a criterion of
fracture of the considered composite materials under uniaxial compresion in the direction
of the Ox, axis (see Fig. 1). In the opinion of the author. the theoretical and experimental
study of the fracture of the considered composite materials by applying the criterion (45)
1s the subject of important separate investigations.

Thus, taking into account the obtained results, we may conclude that under uniaxial
compression of the considered composite in the direction of the Ox, axis (see Fig. 1) by
increasing the deformation, the stiffness of this material decreases.

Considering the reliability of the analysed numerical results, which have been obtained
with the use of only the first two terms of the series (40), in the sense of the numerical
convergence of these results. Note that preliminary investigations of the stress-deformation
state in the considered composite material in the framework of the above formulation,
show that in the range of values of the structural parameters of the considered problem,
the contribution of the third and subsequent orders of approximations on the values of the
stress and deformations have the order of 107°-10"°. Moreover, note that the index 2k in
72, which enters expression (40), shows the number of the approximation order up to
which all previous order approximations enter the expressions of y,,. For example, the
values of the zeroth, the first and the second order approximations enter the expression of
72 (42). Consequently. it follows from the above and from the proposed approach that the
contributions of 3., 3. ... to the values of U (40) will also have the order of 107°-107¢.
Thus. the numerical results analysed in this paper may be considered as sufficiently reliable
in the sense of numerical convergence.

It is obvious that in other cases which do not enter the framework of the above stated
cases, it is necessary to take into account the subsequent order approximations (i.e. 74,
7e- - - -) for the calculation of the considered normalized nonlinear mechanical properties.

In conclusion, note that the method proposed in this paper. with obvious changes,
may be applied for the other normalized nonlinecar mechanical properties of composite
materials with curved layers.
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